Opinion Mining For Text Classification ### Anand Mahendran, Anjali Duraiswamy, Amulya Reddy, Clayton Gonsalves School of Computing Science & Engineering, VIT University, Vellore, Tamilnadu, India. P(Sex=F), Hence our prediction that instance x is a male. Computational complexity of the above mentioned method is given below [12]: - One of the fastest learning methods - O(ndc)= time complexity - O(dc) = space complexity - where c=number of classes, n=number of instances and d=number of attributes. - no hidden constants (number of iterations, etc.) #### D. BAG OF WORDS MODEL The bag-of-words(BoW) model is a representation method used in natural language processing and information retrieval where, a text is represented as an unordered collection of words, disregarding grammar and even word order. The bag-of-words model is commonly used in methods of document classification, where the (frequency of) occurrence of each word is used as a feature for training a classifier [8]. As mentioned above, the purpose of using bag-of-words in our implementation is for two reasons. First being, to extract words easily from a text/document/sentence. And second, to get the weightage of the words/features in the document, which in turn would help us to identify the text category-aiding in classification. This also enhances the performance of the classifier when combined with the naïvebayes classification, as now the text is first filtered for word/feature weightage using BoW and then trains classifier using these words. #### **IMPLEMENTATION STEPS** The two main modules that we are dealing with are- - Word/feature extraction - Classification **Process 1** IJSET@2013 Page 592 This the basic and the first step for any text classification. This can be either static data-fed in manually by the user or dynamic-collected from the web in real time. For simplicity and explanation, we will be considering the static data. The dynamic data poses the problem of dealing with information coming in continuously within very short periods of time and in very high quantity. Handling and classifying the information instantaneously is being researched [4]. There are three kinds of data needed. First the input data for training the classifier. Second, input data for testing the classifier. And the final is the user input data which is to be classified. The text is manually classified with corresponding sentiment as either positive or negative. This can also be a file containing documents of text labelled under each sentiment. #### **TASKS** - 1.1) Enter positive text. - a) [text] - [Sentiment] - e.g.- [I love my car][positive] - 1.2) Enter negative text. - [Text] - [Sentiment] - e.g.-[I don't like rain] [negative] Once the positive and negative text has been entered, the next is the extraction of words. The document is filtered to remove all the stop words such as is, and, the, etc. With respect to our implementation, the BoW is used here to extract words/features. The words extracted are weighed and their order in the text does not matter at all. Once the feature set is got, the frequency distribution function is used to create the training set. #### **ACTIVITIES:** 1) Combine text into one file. #### TASKS - 1.1) Remove words with length >3. - 1.2) Combine all words into one file. - 1.3) Get word features. - Get frequency distribution for words. # International Journal of Scientific Engineering and Technology Volume No.2, Issue No.6, pp : 589-594 (ISSN: 2277-1581) 1 June 2013 #### **TASKS** - 2.1) Count each word occurrence with corresponding sentiment. - 2.2) Create Frequency distribution. - 2.3) Using frequency distribution create training set. #### **Process 3** The most essential part of the sentiment classification tool- the classifier. After the removal of stop words, application of BoW and the creation of the training set, the classifier is the last step. Using the nltk library, we get the Naïve Bayes classifier. This classifier is trained by giving it the training set that was created. Once the classifier has been trained, it is tested using the test data set and once the needed accuracy is reached, it can be implemented via an interface [5]. #### **ACTIVITY** Train Bayes Naive Classifier. #### TASKS: - 1) Using achieved frequency distribution, train classifier. - 2) Test the classifier for accuracy using the test data. ### III. RESULTS In this section, we explain about the various results obtained. #### A. SCREEN SHOTS #### Features from maxent classifier - 0.414 contains(remarkable) == True and label is 'positive' - 0.391 contains(cranky) == True and label is 'negative' - 0.391 contains(depressed) == True and label is 'negative' - 0.383 contains(news) == True and label is 'positive' - 0.358 contains(enemy) == True and label is 'negative' - 0.358 contains(impossible) == True and label is 'negative' - 0.357 contains(dishonest) == True and label is 'negative' - 0.356 contains(unlucky) == True and label is 'negative' - 0.353 contains(love) == True and label is 'positive' - 0.352 contains(tired) == True and label is 'negative' Fig.1. Features from maxent classifier The features and their labels as output after the classifier has been trained using the created training set. For every feature, its frequency distribution is calculated and the higher appearance is given as the labelled sentiment. #### **Maxent training sets** ==> Training (100 iterations) | Iteration | Log Likelihood | Accuracy | |-----------|----------------|----------| | 1 | -0.69315 | 0.500 | | 2 | -0.68576 | 0.991 | | 3 | -0.67850 | 0.991 | | 4 | -0.67138 | 0.991 | | 5 | -0.66437 | 0.991 | | 6 | -0.65749 | 0.991 | | 7 | -0.65073 | 0.991 | | 8 | -0.64408 | 0.991 | | 9 | -0.63755 | 0.991 | | 10 | -0.63114 | 0.991 | | 11 | -0.62483 | 0.991 | | 12 | -0.61864 | 0.991 | | 13 | -0.61255 | 0.991 | | 14 | -0.60657 | 0.991 | | 15 | -0.60070 | 0.991 | Fig.2. Maxent training sets | 1 15.21 1.14.10111 1.141111115 5015 | | | |-------------------------------------|----------|-------| | 85 | -0.35358 | 1.000 | | 86 | -0.35150 | 1.000 | | 87 | -0.34945 | 1.000 | | 88 | -0.34742 | 1.000 | | 89 | -0.34541 | 1.000 | | 90 | -0.34343 | 1.000 | | 91 | -0.34147 | 1.000 | | 92 | -0.33953 | 1.000 | | 93 | -0.33762 | 1.000 | | 94 | -0.33573 | 1.000 | | 95 | -0.33385 | 1.000 | | 96 | -0.33200 | 1.000 | | 97 | -0.33017 | 1.000 | | 98 | -0.32836 | 1.000 | | 99 | -0.32657 | 1.000 | | Final | -0.32480 | 1.000 | Fig.3. Maxent training sets The above two images show the iterations and the details of each run while the classifier is being trained. Once this step is over, it displays the list of features/words with the sentiment given to them. #### **Maxent-postive input** # International Journal of Scientific Engineering and Technology Volume No.2, Issue No.6, pp : 589-594 ``` >>> text = "this work is remarkable" >>> print classifier.classify(extract_features(text.split())) positive ``` Fig.4. Maxent-positive input After the classifier has been trained and tested, the user gives in an input text. Here, we have provided a text to be classified and the classifier has classified it as positive. ### **Maxent-negative input** ``` >>> text = "I feel tired" >>> print classifier.classify(extract_features(text.split())) negative ``` Fig.5. Maxent-negative input Similarly, if a negative sentence is given, the classifier accurately classifies the text as a negative sentiment. #### Features from naive bayes classifier ``` Most Informative Features contains (news) = True negati : positi = 3.0:1.0 3.0:1.0 contains (has) = True negati : positi = contains(his) = True negati : positi = 2.3:1.0 contains (and) = True negati : positi = 1.8:1.0 1.7:1.0 contains (movie) = True negati : positi = 1.7:1.0 contains(today) = True positi : negati = contains(like) = True negati : positi = 1.7:1.0 contains(always) = True 1.7:1.0 negati : positi = contains (personality) = True positi : negati = 1.7:1.0 contains (feel) = True positi : negati = 1.6:1.0 >>> ``` Fig.6. Features from naive bayes classifier From the given training set, this is a sample of the few features that have been extracted and displayed. ## **Bayes-positive input** ``` >>> text = "this is good" >>> print classifier.classify(extract_features(text.split())) positive ``` Fig.7. Bayes-positive input Once the classifier has been trained, and a sentence is given by the user for identification, it is more or less classified accurately as positive. (ISSN: 2277-1581) 1 June 2013 #### **Bayes-negative input** ``` >>> text = "this city is horrible" >>> print classifier.classify(extract_features(text.split())) negative ``` Fig.8. Bayes-negative input Same as above, once the text has been submitted for identification, the classifier breaks down the sentence and accordingly gives it its sentiment. #### IV. CONCLUSION In this paper, we have classified the text based on opinion mining. With the help of sentiment analysis, we are able to collect features from text, extract them, classify them and provide opinions/sentiment about the text/data/documents to the users with the help of bayes naïve classifier or maximum entropy classifier. Improving the efficient classification of text with other techniques is left as a future work. #### V. REFERENCES - [1] B. Sriram, "short text classification in twitter to improve information filtering", may 2010, Unpublished - [2] B.Pang, L. Lee, "Opinion Mining and sentiment analysis," now, vol. 1, no.1-2, pp 1-7 march 2008 - [3] B.Pang, L. Lee, "Opinion Mining and sentiment analysis," now, vol. 2, no.1-2, pp 10-11 march 2008 - [4] D. Osimo, F. Murredu, "Research Challenge on Opinion Mining and Sentiment Analysis, Unpublished - [5] R. Probowo, M. Thelwall, "Sentiment Analysis: A Combined Approach," SCIT, University Of Wolverhamptom - [6] Data Mining [Online]. Available: http://en.wikipedia.org/wiki/Data_mining - [7] Text Classification [Online]. Available: http://en.wikipedia.org/wiki/Text_classification - [8] Bag of words model [Online]. Available: http://en.wikipedia.org/wiki/Bag_of_words - [9] Kevin P. Murphy, "Naive bayes classifier", October 2006, Unpublished - [10]http://blog.peltarion.com/2006/07/10/classifier-showdown/ - [11] http://software.ucv.ro/~cmihaescu/ro/teaching/AIR/docs/Lab4- NaiveBayes.pdf [12]http://www.inf.ed.ac.uk/teaching/courses/iaml/slides/naive-2x2.pdf